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Abstract. We construct a non-degenerate weak-disorder expansion of Lyapunov exponents 
of quasi-one-dimensional random systems Md x m, and for both diagonal and off-diagonal 
disorders. The supersymmetric representation of the Green function enables us to express 
the coefficients of expansion graphically. For diagonal disorder, an explicit form of expansion 
up to fourth order in disorder is given. Inside the energy band, there are critical energies for 
which our expansion does not work. We did not succeed in generalising our expansion for 
the degenerate case. 

1. Introduction 

Interest in quasi-one-dimensional random systems has grown rapidly since the work of 
Pichard and Sarma [l]. They applied the ideas of the finite-size-scaling theory [2] to the 
problem of Anderson localisation, and found numerically the critical value of disorder 
for which transitions to the exponentially localised states arise in the band centre of two- 
dimensional (2D) and three-dimensional (3D) systems. The same method has been used 
in [3-51. 

The analytical treatment of quasi-iD systems has been developed by Pendry [6] who 
worked out the generalised transfer-matrix method for studying 3~ systems. Derrida et 
a1 [7] derived the weak-disorder expansion (WDE) of Lyapunov exponents (LES) of quasi- 
1~ system M X W. Recently we proposed an alternative method for constructing the WDE 
of LES [8], based on the supersymmetric representation of the Green function. The WDE, 
however, works only for the best LE, i.e., for that which corresponds to the most slowly 
decreasing term in the Green function. To find all other LE, one has to use another 
treatment. 

The aims of this paper are as follows. (i) To give formulae for calculating all other 
LES of the quasi-iD system M X W; (ii) to generalise our treatment for non-degenerate 
systems Md X m, d = 2,3, . . . ; although we hoped [8] that a supersymmetric formalism 
would enable us to construct also the degenerate WDE for all LES, we have not succeeded 
in doing so; (iii) to find the WDE of LES for systems with both diagonal and off-diagonal 
disorders; and (iv) to discuss the anomalies in the energy dependency of LE. 

In § 2 we derive the Green function for the system M d  X CQ. In § 3 general formulae 
for the particular sums of LE are presented. The WDE of LE for non-degenerate energies 
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is given in § 4. In 0 5 we discuss problems that arise in the degenerate cases, and § 6 deals 
with anomalies that arise in the E-dependency of LES. 

2. Green function 

We start with Hamiltonian 

H = H o  + H ,  

where 

Ho = 2 /X,Y>(X + 1,Yl + /X,y l)(X,yl + tx  I X ,  M>(X, 11 f HC (2) 
X . Y  X 

H ,  = A c exy lx, Y k  Yl. (3) 
X . Y  

y and y + 1 = 1, 2, , . . , M ,  x = 1 , 2 ,  . . , , Here exy are random independent energies 
with zero mean value. Ho corresponds to the motion of an electron in the lattice M X CO, 
and t defines the boundary conditions in the y-direction. The energy of an electron 
with Hamiltonian H o  can be separated into two parts 

E = E x ( n )  + E ,  n = 1 , 2  , . . . ,  M .  (4) 
E, corresponds to the motion in the y-direction and is given as the eigenvalues of the 
Hamiltonian 

H ,  = 

0 1  . . .  t 

1 0 1 . . .  
1 0 1  

t 1 0  

2 cos[xn/(M + l)] t = O  

2 cos[2nn/M] t =  1. En = [  
We define the M x M matrices with elements Yij(n) as follows: 

yi j(n) = (iJn>(nli> (7) 

where (nli) is the eigenvector of Hy corresponding to the eigenenergy E,. One easily 
finds the explicit form of Yij(n): 

Yij(n) = 

The motion in the x-direction can be characterised by the wavevector q, which solves 
the equation 

[2/(M + I)]  sin[nni/(M + I)]  sin[nnj/(M + I)] t = O  

t =  1. { (2/M) sin(2nnilM) sin(2nnjlM) 

2 cos q ,  = E x ( n )  = E - E,. (8) 

In the following we assume to be complex, possessing the infinitesimally small imagin- 
ary part: E = E + io, and define the sign of the imaginary part of q, identical to the sign 
of imaginary part of E.  
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The Green function of an electron with Hamiltonian H o  reads [ 101 

G?or(E + io> = gror(n> (9) 

where ro = ( x o ,  i ) ,  Y = (x, j ) ,  and 

gror(n) = yij(n)gx, (n)  (10) 

gxox(n) = - iexP( iqnI~-x~I)Qn (11) 

(12) Q , = [ 4 - ( E - E f l )  2 ] -112 . 

Formula (9) can be easily generalised for the system M d  x w, d > 1. Let us take 

In> = Inl, n 2 , .  . . . , nd)  

E ,  = E,, + E,, + . . + E,, 

with E,,, given by (6). Let us now renumerate sites i l ,  i z ,  . . . , id in the cross section 
perpendicular to the x-direction as 

and define new M d  x Md matrices Y,(n) as follows: 
d 

yij(n> = ~ i , i  2,..id.jlj2...Id(ni,n2, . ,nd) = II (iaInw)(nffIje). (16) 
f f = l  

The wavevector qn can again be found from equation (8) with E,, given by (14), and 
G!Or, r = ( x ,  i)  is given in (9) with matrices Y given by (16). Thus, in what follows all our 
considerations are valid for any d .  Supposing the non-degenerate case, we can order all 
q such that 

IIm 41 I < IIm q2 I < . * ' < IIm q N I  N = Md. (17) 

3. Lyapunov exponents 

For the one-dimensional case, when the Green function is of the form ( l l ) ,  we can 
calculate the LE from formulae (9) and (10): 

1 
y(E + io) = lim - (log G,b(E -k io)). 

b-a-+m b - a 
For the quasi-11, case, the Green function is an N X N matrix Gab and consists of the sum 
of N exponentially decreasing terms. Thus we are looking for N LES yl, y z ,  . . . , yN with 
negative real parts. In analogy with (17) we order them as 

IRe Y 1 I < (Re  Y 2  I < . . . < /Re  YN I (17') 
(for the zero-disorder case, yn(A = 0) = iq,). Then the natural generalisation of (18) is 

where Sp is the sum of diagonal elements of Gob, and gives only the LE y 1  with the smallest 
(in absolute value) real part. 
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From (9) and (10) one easily finds that 

= 2, (- l ) ;b+ ,  . . + i , + j l + .  . .i, det Y(n)  s det G f b  
a p  det Gtb 

. .  
11 . . .  I p  

ii . . . ip ii...ip 
. .  

I 1 . .  . I p  1 1 . .  . l p  

I l . . . l p  

j k # j i  

. .  dgP, 
i k # i i  

where det,,, , , i p , j l , ,  , j p  A is determinant of a p  X p matrix consisting of rows i,, . . . , ip and 
columns j , ,  . . . , j p  of an N x N matrix A, and Sdet i l , , , ip , j l  ,,,, Go is a determinant of 
matrix Go from which rows il, . . . , ip and columns j , ,  . . . , jp  have been omitted. 

Owing to (7 ) ,  forp  > 1, we have 

and so 

d e t G : b = g l * g 2 ' . . . * g N .  

In the same way one can prove that any det i l , ,  , i p , i l , ,  , i p  G tb is also linear in g,, and so can 
be expressed as the sum of the products o fp  different g,. Thus, in the limit lb - a1 + m, 

in the sum 

= 2 det . .  . Gfb 
i l i 2 . .  . i p  11'2. .  .Lp 

i l i 2  . . .  ip 

only the term proportional to exp[i(q, + q2 + . . . + qp)lb - ai]  survives. 
By analogy, if the disorder is taken into account, we obtain 

E, = 2 det Gab 
1 1 ~ 2 . .  . l P  i i . .  . i p  

1 1 . .  . I p  

, .  . 
. .  

and so 

1 
lim - (log E, ). 

+ y p  = I b - a / + r  b - U 
rp = y1 + y 2  + .  . . 

For p = 1 one recovers (19). 
Let us note that our formalism differs from that commonly used in the literature; the 

LES of quasi-ir, systems are usually calculated from the product of random matrices. 
Then there are 2N LES, pi = - j N + , ,  and, unlike the present formalism, such a method 
deals with the LES 7 with a positive real part. Then the LES are ordered as 

Re  7 ,  > Re p2 > . . . > Re j N  

and the particular sum 

f, = y ,  + j *  + . . . + yp 
is calculated [7]. One easily finds a correspondence between y and 7 as 

Y n  = - ? N + I - ~ .  
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iz ' k ,  

Figure 1. Graphical representation of X p  ( k , ,  . e 

a e 

k2,  . . . , k,) as a permutation w of (1,2, . . . , p ) .  
One has to sum over all such permutations with . e an appropriate factor P ( w ) .  Owing to equation 
(28) in the zero-order approximation only a diag- 
onal term with k, = i survives. 'kc 'P 

4. Weak-disorder expansion 

To construct the WDE of LES, we first use the replica trick [6,9,11] and rewrite (22) in a 
more suitable form 

Now we express the Green function in the supersymmetric representation [9, 121 

G ( E  + io) = -i DQ,* DQ, Ea, i fz , j  exp[iQ*(E + io - H)@] (25) 
ab i 
ii 

where Q, = (i) is supervector consisting of commutative ( f )  and non-commutative 
vectors ( p ) .  Inserting (25) into (24), we can average over the disorder, and so obtain the 
formula 

(E;) = 2 . * .  2 c. P ( W l ) P ( W 2 ) .  . . P ( o n )  
I ; . . . ; '  i ;  . . .  i" w l . . . w n  

n p  

a=l  B=1 
x 111 n ( D Q , * ~ P D Q ~ P ~ ; ~ E : ~ )  

We use the definition of determinant of a p  X p matrix: 

. .  
1 1 . .  , l p  

in which the summation is over all permutations of o: (1,2, . . . , p)  + (kl, k2, . . . , k p ) ,  
and P(o) defines the corresponding sign: P(o) = +-1. 

In (26) the condition ik # i, for k # 1 is not necessary, since such determinants are 
evidently zero. 

Expanding (26) into power series in A one obtains the WDE of (2;) which can be easily 
expressed graphically. To do so, we introduce a 'family'-the graphical representation 
of Z, (figure 1). It contains a sum of products of p Green functions with appropriate 
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k Figure 2. The second-order diagrams of 
expansion (35). Two-particle diagram (b )  
may correspond to one family if k l  = 2, 
k2 = 1; then m2 = m3 # m, = m4. For 
k ,  = 1, kz  = 2 lines belong to different 
families with ml = m2 = m3 = m4. 

m2 

1 
I 

‘k2 

0 ‘I m1 ‘ 
(2 m3 I 4 

(a1 I b) 

indices and signs. Owing to (20) the lines should be represented by the first p terms in 
sum (9). Since the matrices with elements Y&n) are ‘orthogonal’, 

the zero-order term of each family consists only of the diagonal term with ki = i: 

Z,(A=O)+g,*gz’ . . . * g ,  Ib-al--. (29) 
The second- and fourth-order terms of the WDE can be expressed by the diagrams 
presented in figures 2-4. Their contributions can be calculated using the generalised 
Wick’s theorem [9]. Most of the diagrams are known from the WDE of LES in a ID system 
although two differences should be pointed out: 

(i) The non-local diagrams in figure 4 depend strongly on the position of the inter- 
acting points, and should be calculated separately for x1 > x2, x1 < x2 (i, j arbitrary) and 
f o r x l = x 2 ( i # j ) .  

(ii) While the one-particle diagrams correspond to the first ‘diagonal’ member in 
each family, the k-particle diagrams can connect either the lines inside one family or the 
lines from two or more families. 

These features also explain why diagrams 4(h-j) survive, and makes the calculation 
of contributions of diagrams slightly more complicated. In general, one can find the 
contribution of diagram following the following rules: 

n 

U 
( C )  

Figure3. Local (proportional to (e4)) fourth-order 
diagrams. 

0 ( J )  
i d )  

Figure 4. Non-local (proportional to (e2)*) fourth- 
order diagrams. Their value strongly depends 
upon the relations of x-coordinates of interaction 
points. 
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(i) the sign of k-particle diagram is (- l)k+ ' .  
(ii) The 'inner' lines in diagram (those that do not end in points x = a or x = b)  may 

be represented by any factor gn,  n = 1, . . . , N .  
(iii) The 'external' lines may be occupied by anyg,, m = 1 , 2 ,  . . . , p .  Owing to (28),  

the line starting from i, and that ending in i kp  = i, are represented by the same gm. 
(iv) Summation over all ip = 1, . . . , Mand over positions of interacting points should 

be performed. 

As an example, we derive the second-order term. Figure 2(a)  has to be diagonal and 
gives 

P N  -A2(e2) 
n(b - a ) ( T )  m=l 2 k = l  2 smk[  e= fi 1 g,]' 

where 

Smk = C Yii(m)Yii(k)QmQk* (31) 
1 

In figure 2(b)  we can choose k l  = 1, k2 = 2;  then ml = m2 = m = m3 = m4. Thus the 
lines belong to different families, and one obtains 

Another contribution is given by k l  = 2 ,  k2 = 1. Then ml  = m4 = k ,  m2 = m3 = m. This 
diagram belongs to one family; owing to (27) it receives the sign (- 1) and gives 

m+k 

Expressions (32) and (33) together give the contribution described by rule (iii). From 
(29)-(33) one finds the second-order approximation of yp: 
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In (35), the summation over indices should be performed: 1 s a, p, y . . . S N ,  1 s m, 
n ,  1, k 6 p ,  p < a,  b ,  c . . . 6 N .  One can easily check that (35) is equivalent to the WDE 
of [7]. Indeed, the difference 

r N - p  - r N  

gives, owing to (23), formula (40) of [7]. 
The graphical expansion can be used also for direct calculation of a given y,. To do 

so, one has to complete contributions of all diagrams in which at least one external line 
is represented by gp and all other external lines by gm, m 6 p .  

4.1. The off-diagonal disorder 

As shown in [9], the supersymmetric formalism unifies the problem with diagonal and 
with off-diagonal disorder. Thus, using techniques developed in D 2-4, one can construct 
the non-degenerate WDE of all LES for any system Md X x with the off-diagonal disorder 

H ,  = A 2 ( u x j  lx, y)(x + 1, Y I + uyx lx, yXx, Y + 11) + HC. 
X.Y  

We present here only the expression for yp  up to second order in the interaction: 

1 - 2 2 c o s 2 ( ~ ) s p m  + cos2 qpspp 
P 

m = l  

N 

- A ~ ( U Z ) (  a = p +  c 1 q p a  + qpp/2) 

where 

and the summation in (42) goes over all pairs of the first-neighbour sites i, j in the plane 
perpendicular to the x-direction. 
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Figure 5. The E-dependence of energies E,(n) for 
M = 3, d = 1. The critical energies, for which the 
WDE (35) diverges, are depicted. 

5. Degeneracy 

Although we have expressed the hope that supersymmetric formalism would enable us 
to construct the degenerate perturbation theory [8], we have not succeeded in doing so. 
Degeneracy may arise from the configuration of the system: for d = 1, t = 1, or for any 
d > 1 if the boundary conditions in two or more directions are the same. If only Im q, = 
Im q r t l ,  then equation (35) gives the WDE of r, forp  6 r - 1 , p  3 r + 1, but it fails for 
r,. The reason lies in the fact that non-local diagrams in figure 4 give, in addition to the 
terms -b - a ,  contributions proportional to (b  - a)2. For the non-degenerate case, 
these contributions cancel each other due to the properties of matrices Y. For degeneracy 
D > 1, however, it is not true, and so the fourth- and similarly the higher-order terms 
diverge in the same way as in the WDE of [7 ] ,  Thus, we can obtain the WDE of all LES only 
for systems with d = 1, t # 1, or for systems with d > 1, if the boundary conditions in 
directions perpendicular to x differ. If one can remove the degeneracy (e.g., by a small 
change in boundary conditions), then for (Im qr( - /Im q,+ll = A = A2x one finds that 
the expansion coefficients of yr ,  y,+ have the form 

c(x )  = CO + C J X  + c2/x2 + . . . (43) 
in agreement with [ 131. 

Another degeneracy-an 'accidental' one-arises in any quasi-1D system in the 
energy dependence of the LES. As can be seen from figure 5 ,  there are energies E' in the 
energy band such that 

E,(r )  = -E, (r  + 1) 

Im 4, = Im q r + 1  

Req ,  = n - Req ,+ l .  

(44) 

(45) 

(46) 

and so 

but 

In the neighbourhood of E ' ,  E = E' + A%, one finds expansion coefficients of yr ,  yr+l  
of the form (43). Moreover, relation (46) causes the divergencies of all rp. 
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6. Anomalies 

Because all quasi-1D systems are effectively one-dimensional, the WDE suffers from 
singularities of the same origin as that for the ID system [9]: there are critical energies 
inside the energy band for which the coefficients of expansion diverge. As an example, 
in figure 5 we present the E-dependence of energies E,(n) = E - E,, for M = 3, d = 1 
(now = k f i ,  EZ = 0). The critical energies, for which the WDE fails, are as follows: 

(i) for energies 2 - .\/?, 2 , 2  + fi the corresponding E, = 2 and the band edge 
anomaly arises; 

(ii) for E = 0 , 2  E, is equal to zero and the band centre anomaly arises; 
(iii) the divergency of the fourth-order diagrams may be, in general, reached for 

energy E which gives a set of solutions q of (9) for which the denominator of any function 
(39), (40) is zero. The special case of such energies are the accidentally degenerate 
energies; 

(iv) in the higher orders, the anomaly arising in the neighbourhood of energies E 
such that E,(n) = E - E,, = 2 cos(m/s) causes the divergency of the 2sth-order term in 
the WDE. 

In [9] we described the possible regularisation of the WDE of LE in a ID system, based on 
the Pad6 approximation of series like (43). For a diagonal disorder, our approximate 
formulae differ only slightly from the exact results found in [14-171. Thus we assume 
that for diagonal disorders we can also construct similar regularisation for the quasi-ID 
case. However, in addition to the proof of analyticity of LE in the neighbourhood of 
critical energies, the calculation of higher-order diagrams is also needed. 

7. Conclusion 

We presented the non-degenerate weak-disorder expansion of all LES of an electron in 
a system Md x W. Our formalism, based on the supersymmetric representation of the 
Green function, generalises the expansion presented in [7] for the case of arbitrary d 
and for off-diagonal disorders. For diagonal disorders we presented an explicit form of 
the WDE of the particular sums of LES up to fourth order in disorder. 

Owing to the large number of critical energies in the energy band we are afraid that 
the WDE of the form (35) provides insufficient information about the energy dependence 
of LE even for small disorders. There are non-analyticities in the energy dependence of 
LES arising from band centre and band edge anomalies. To treat such anomalies seriously, 
a special method for calculating the corresponding LES should be constructed; maybe it 
would be possible to generalise any method developed for the ID case [14-171 or self- 
consistent treatment [MI. 

there is a large number ( - M )  of 
accidentally degenerate energies in the energy band. Thus, the problem of generalisation 
of expansion (35) for the case of degenerate energies is actual even for the simplest quasi- 
ID systems. We consider the method presented in [13] to be the most promising to solve 
this problem. 

The situation, similar to that presented in this paper, arises also for the generalised 
one-dimensional Anderson model [9]. Here the Green function is also given as the sum 
of exponentially decreasing terms, and so more than one LE should be calculated. We 
note that similar to the quasi-iD case, the method of calculation of LE presented in [9], 

In addition to these anomalies, for system M x 
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works only for the LE y1 with the smallest (in absolute values) real part. The calculation 
of the particular sums rP of LES in this case is given elsewhere [19]. 
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